Digital Component

- Plastic Quad Flat Package (PQFP)

- TO Packages (Transistor single Outline)

2-2 Decoder/ Encoder

- Decoder
- A combinational circuit that converts binary information from the n coded inputs to a maximum of 2^{n} unique outputs
- n-to- m line decoder $=n \times m$ decoder
- \boldsymbol{n} inputs, m outputs
- If the n -bit coded information has unused bit combinations, the decoder may have less than 2^{n} outputs
- $m \leq 2^{n}$
- 3-to-8 Decoder
- Logic Diagram : Fig. 2-1
- Truth Table : Tab. 2-1
- Commercial decoders include one or more Enable Input(E)

Tab. 2-1 Truth table for 3-to-8 Decoder

Fig. 2-1 3-to-8 Decoder

- NAND Gate Decoder

* Active Low Output

* Fig. 2-1 3-to-8 Decoder Active High Output
- Constructed with NAND instead of AND gates
- Logic Diagram/Truth Table : Fig. 2-2

Fig. 2-2 2-to-4 Decoder with NAND gates

- Decoder Expansion

Enable Input		Outout			
E	Ala				
0	$\times \times$	0	0	0	0
1	00	0	0	0	1
1	01	0	0	1	0
1	10	0	1	0	
1	11	1	0	0	

(a) Truth Table

- 3 X 8 Decoder constructed with two 2 X 4 Decoder
- Constructed decoder : Fig. 2-3
- Encoder
- Inverse Operation of a decoder
- 2^{n} input, n output
- Truth Table : Tab. 2-2
- 3 OR Gates Implementation
" A 0 = D1 + D3 + D5 + D7
" $\mathrm{A} 1=\mathrm{D} 2+\mathrm{D} 3+\mathrm{D} 6+\mathrm{D} 7$
" $\mathrm{A} 2=\mathrm{D} 4+\mathrm{D} 5+\mathrm{D} 6+\mathrm{D} 7$

Tab. 2-2 Truth Table for

(b) Logic Diagram

Fig. 2-3 A 3-to-8 Decoder ${ }^{\text {D }}$ constructed with two with 2-to-4 Decoder

- Multiplexer(Mux)
- A combinational circuit that receives binary information from one of 2^{n} input data lines and directs it to a single output line
$-A 2^{n}$-to 1 multiplexer has 2^{n} input data lines and I_{0} n input selection lines(Data Selector)
- 4-to-1 multiplexer Diagram : Fig. 2-4
- 4-to-1 multiplexer Function Table : Tab. 2-3

Tab. 2-3 Function Table for 4-to-1 line Multiplexter

- Quadruple 2-to-1 Multiplexer
- Quadruple 2-to-1 Multiplexer : Fig. 2-5

Fig. 2-5 Quadruple 2-to-1 line Multiplexter

Select		Output
E	S	Y
0	$\mathbf{0}$	All 0's
$\mathbf{1}$	$\mathbf{0}$	A
$\mathbf{1}$	$\mathbf{1}$	B

(a) Function Table

- Register
- A group of flip-flops with each flip-flop capable of storing one bit of information
- An n-bit register has a group of n flip-flops and is capable of storing any binary information of n bits
- The simplest register consists only of flip-flops, with no external gate : Fig. 2-6
- A clock input C will load all four inputs in parallel
- The clock must be inhibited if the content of the register must be left unchanged
- Register with Parallel Load
- A 4-bit register with a load control input : Fig. 2-7
- The clock inputs receive clock pulses at all times
- The buffer gate in the clock input will increase "fan-out"
- Load Input
- 1 : Four input transfer

- Shift Register
- A register capable of shifting its binary information in one or both directions
- The logical configuration of a shift register consists of a chain of flip-flops in cascade
- The simplest possible shift register uses only flip-flops : Fig. 2-8
- The serial input determines what goes into the leftmost position during the shift
- The serial output is taken from the output of the rightmost flip-flop

Fig. 2-8 4-bit shift register

Fig. 2-7 4-bit register with parallel load

- Bidirectional Shift Register with Parallel Load
- A register capable of shifting in one direction only is called a unidirectional shift register
- A register that can shift in both directions is called a bidirectional shift register
- The most general shift register has all the capabilities listed below:
- An input clock pulse to synchronize all operations
- A shift-right /left (serial output/input)
- A parallel load, n parallel output lines
- The register unchanged even though clock pulses are applied continuously
- 4-bit bidirectional shift register with parallel load : Fig. 2-9
- $4 \times 1 \mathrm{Mux}=4, \mathrm{D} F / F=4$

Tab. 2-4 Function Table for Register of Fig. 2-9

Fig. 2-9 Bidirectional shift register

2-6 Binary Counter

- Counter
- A register goes through a predetermined sequence of state(Upon the application of input pulses)
- Used for counting the number of occurrences of an event and useful for generating timing signals to control the sequence of operations in digital computers
- An n-bit binary counter is a register of n flip-flop(count from 0 to $2^{n}-1$)

4 bit Synchronous Binary Counter
A counter circuit will usually employ F/F with complementing capabilities(T and J-K F/F)

- 4 bit Synchronous Binary Counter :

Fig. 2-10

Fig. 2-10 4-bit Synchronous binary counter

- Binary Counter with Parallel Load
- Counters employed in digital systems(CPU Register) require a parallel load capability for transferring an initial binary number prior to the count operation
- 4-bit binary counter with Clear, Parallel Load, and Increment(Counter) :
Fig. 2-11
- Function Table : Tab. 2-5

- Clear : $1 \longrightarrow \mathrm{~K}=\mathrm{X}, \mathrm{J}=0 \longrightarrow$ Clear $(\mathrm{Q}=0)$ (Clear, Load=X)
- Load: 1 (Clear=0) $\left\{\begin{array}{l}\mathrm{I}=1 \longrightarrow \mathrm{~J}=1, \mathrm{~K}=0 \\ \mathrm{I}=0 \longrightarrow \mathrm{~J}=0, \mathrm{~K}=1\end{array}\right.$
- Increment : $1 \longrightarrow \mathrm{~J}=\mathrm{K}=1$ (Toggle) (Clear, Load=0)

Fig. 2-11 4-bit binary counter with parallel load

- Memory Unit
- A collection of storage cells together with associated circuits needed to transfer information in and out of storage
- The memory stores binary information in groups of bits called words
- Word
- A group of binary information that is processed in one simultaneous operation
- Byte
- A group of eight bits (nibble : four bits)
- The number of address line $=k$
- Address(Identification number) : $0,1,2,3, \ldots$ up to $2^{k}-1$
- The selection of specific word inside memory : k bit binary address
- 1 Kilo $=2^{10}, 1$ Mega= $2^{20}, 1$ Giga= 2^{30}
- 16 bit address line : $2^{16}=64 \mathrm{~K}$
- Solid State Memory (IC Memory)
- RAM(Volatile Memory)

Dec	Hex	
0	0000	
1	0001	
2	0010	
3	0011	Memory
\cdot	\cdot	Word
\cdot	\cdot	
\cdot	\cdot	
65535	$F F F F$	

- Random Access Memory
- The memory cells can be accessed for information transfer from any desired random location
- Communication between a memory and its environment is achieved through data input and output lines, address selection lines, and control lines : Fig. 2-12
- The two operations that a random-access memory can perform are the write and read operations
- Memory Write

1) Apply the binary address
2) Apply the data bits
3) Activate the write input

- Memory Read

1) Apply the binary address
2) Activate the read input
" The content of the selected word does not change after reading

- NV-RAM : battery back-up CMOS RAM

Fig. 2-12 Block diagram of RAM

- Read-Only Memory
- A memory unit that performs the read operation only; it does not have a write capability address input lines $\downarrow \mathbf{k}$
- ROM comes with special internal electronic fuses that can be "programmed" for a specific configuration
$\rightarrow m \times n$ ROM : Fig. 2-13 data input lines
- k address input lines to select one of $2^{k}=m$ words of memory, and n output lines(n bits word)
ROM is classified as a combinational circuit, because the outputs are a function of only the present inputs(address lines)
- There is no need for providing storage capabilities as in a RAM
- ROM is also employed in the design of control units for digital computers
- A Control Unit that utilizes a ROM to store binary control information is called a micro-programmed control
- Types of ROMs
- UVEPROM(Chip level erase), EEPROM(Byte level erase), Flash ROM(Page or block level erase), OTPROM, Mask ROM

